The interaction between event structure and argument structure: the Hungarian facts

Éva Kardos (kardoseva@unideb.hu) and Gergely Pethő (pagstudium@gmail.com)
University of Debrecen

SLE 2015, Leiden

1. Introduction
It is well known that a subset of verbal particles in Hungarian pattern with resultative constructions in that they have direct effects on the internal structure of events expressed by verbal predicates such that they ensure the boundedness of these events (cf. É. Kiss 2008, Kardos 2012). A lesser known aspect of these particles and resultative expressions is how they affect the argument structure of the verb that they accompany. This is what we would like to explore in our talk. For time constraints, we will examine É. Kiss’s (2008) resultative particles and disregard locative particles.

First, we begin by addressing the **aspectual effects** of verbal particles and resultative expressions.

Then we look into how **event structure facts correlate with argument structure facts**, as discussed in the literature in numerous works. We focus our attention on Rappaport Hovav and Levin (henceforth RHL) (1998, 2001) in this review.

In the second half of the talk, we examine the predictions that fall out of event-structure-based analyses of argument structure like RHL (1998, 2001) with respect to Hungarian.

2. Aspectual effects of Hungarian verbal particles and resultative expressions
First, resultative particles and resultative expressions have a telicizing effect, as is illustrated in (1), **where the verbal predicate containing the resultative particle meg in (1b) or the one appearing with the resultative expression rongyosra ‘into shreds’ in (1c) are bounded, whereas the predicate without a particle or a resultative expression in (1a) is unbounded, as evidenced by the temporal adverbial test.**

(1)

<table>
<thead>
<tr>
<th></th>
<th>Hungarian</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J.NOM 10 minute-for/*10 minute under PRT-nézte the film-ACC</td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>János 10 perc alatt/*10 perc-ig meg-nézte a film-et.</td>
<td>János watched the film in 10 minutes.</td>
</tr>
<tr>
<td></td>
<td>J.NOM 10 minute under/*10 minute-for PRT-nézte the film-ACC</td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>János két nap alatt/*két nap-ig rongyosra nézte a film-et.</td>
<td>János watched the film too many times.</td>
</tr>
<tr>
<td></td>
<td>J.NOM two day under/two day-for into.shreds watched the film-ACC</td>
<td></td>
</tr>
</tbody>
</table>

That an inherent endpoint is lexicalized by verbs accompanied by a resultative particle is also shown in (2), where the continuation cancelling the attainment of an endpoint to the event **yields semantic anomaly.**

(2)

<table>
<thead>
<tr>
<th>Hungarian</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Kati meg-nézte a film-et, de csak a felé-ig jutott.</td>
<td>#Kati PRT-watched the film, but she got through only half of it.</td>
</tr>
<tr>
<td>K.NOM PRT-watched the film-ACC, but only the half-for she.got.</td>
<td></td>
</tr>
</tbody>
</table>
Another piece of evidence for the similar aspectual behavior of resultative particles and resultative expressions is that **instantaneous events, which are inherently bounded**, are generally marked in Hungarian. The **marking elements are either particles**, as in (3a, 3c, 3d, and 3e) or **resultative expressions**, as in (3b). The lack of a particle or a resultative expression gives rise to ungrammaticality.

\[(3)\]

a. János *(el-törg*) egy vázá-t.
J.NOM *(PRT-)*broke a vase-ACC
‘János broke a vase.’
b. János *(darabok-ra) tör* egy vázá-t.
J.NOM *(pieces-into)* broke a vase-ACC
‘János broke a vase into pieces.’
c. Péter *(meg-halt)*.
P.NOM *(PRT-)*died.
‘Péter died.’
d. Mari *(meg-talált)* a toll-at.
M.NOM *(PRT-)*found the pen-ACC
‘Mari found the pen.’
e. Sára *(el-érte)* a hegycsúcs-ot.
S.NOM *(PRT-)*reached the hilltop-ACC
‘Sára reached the hilltop.’

Next, telicity-marking by particles is also apparent in light of the examples in (4) – (7), which show that, when appearing with a particle, verbs like **fog ‘hold’, alszik ‘sleep’, ért ‘understand’, and tud ‘know’** are interpreted to express **ingressive event descriptions**; otherwise, i.e. without particles, these verbs are taken to describe stative eventualities. The predicates in the (b) examples, which contain a particle verb, receive a perfective interpretation, whereas the (a) examples containing base verbs are imperfective.

\[(4)\]

a. János fogta a pisztoly-t.
J.NOM held the handgun-ACC
‘János was holding the handgun.’
b. János meg-fogta a pisztoly-t.
J.NOM PRT-held the handgun-ACC
‘János grabbed the handgun.’

\[(5)\]

a. János aludt.
J.NOM slept
‘János was sleeping/slept.’
b. János el-aludt.
J.NOM PRT-slept
‘János fell asleep.’

\[(6)\]

a. Kati értette az elmélet-et.
K.NOM understood the theory-ACC.
‘Kati understood the theory.’
b. Kati meg-értette az elmélet-et.
K.NOM PRT-understood the theory-ACC
‘Kati came to understand the theory.’

\[(7)\]

a. Péter tudta az igazság-t.
P.NOM knew the truth-ACC
‘Péter knew the truth.’

b. Péter meg-tudta az igazság-ot.

P.NOM PRT-knew the truth-ACC

‘Péter learned the truth.’

A somewhat similar pattern is observable in Romance languages, where verbs like that in (8) are typically interpreted to describe stative situations in imperfective sentences, whereas in perfective sentences they tend to be understood to describe telic, ingressive situations.¹

(8) a. Leo impugnò la pistola; tutt’ attorno si fece un subito silenzio.
 ‘Leo got hold (-SIMPLE PAST) of his gun; all around a sudden silence arose.’

b. Quando Lia entrò, Leo impugnava la pistola.
 ‘When Lia came in, Leo was holding (-IMPERFECT) his gun.’

(Bertinetto 2001: 192, (8a) and (8b))

Finally, unlike their English counterparts, predicates containing degree verbs like melegít ‘warm’ and hűt ‘cool’, which appear without a particle, are invariably unbounded. Compare (9) and (10).

(9) a. Kate warmed the soup for/in 10 minutes.
 b. Kate cooled the soup for/in 10 minutes.

(10) a. Kati 10 percig/*10 perc alatt melegítette a leves-t.
 K.NOM 10 minute-for/10 minute under warmed the soup-ACC
 ‘Kati was warming the soup for 10 minutes.’

b. Kati 10 perc-ig/*10 perc alatt hűtötte a leves-t.
 K.NOM 10 minute-for/10 minute under cooled the soup-ACC
 ‘Kati was cooling the soup for 10 minutes.’

Once a particle or a resultative expression shows up in the predicate, an invariably telic interpretation arises.

(11) a. Kati 10 perc alatt/*10 perc-ig fel-melegítette a leves-t.
 K.NOM 10 minuteunder/*10 minute- for PRT-warmed the soup-ACC
 ‘Kati warmed the soup in 10 minutes.’

b. Kati 10 perc alatt/*10 perc-ig le-hűtötte a leves-t.
 K.NOM 10 minuteunder/*10 minute-for PRT-cooled the soup-ACC
 ‘Kati cooled the soup in 10 minutes.’

c. Kati 10 perc alatt/10 perc-ig jéghideg-re hűtötte a leves-t.
 K.NOM 10 minute under/10 perc-ig as.cool.as.ice-into cooled
 the soup-ACC
 ‘Kati cooled the soup in 10 minutes in a way that the soup ended up being as cool as ice.’

3. Event-complexity accounts of argument realization

That the aspectual properties of eventive predicates have direct consequences with respect to

¹ Bertinetto (2001: 192, fn. 18) also notes that these are only the preferred interpretations. The verbal expression in (8a) can in fact refer to a protracted non-dynamic situation, and (8b) can be taken to describe a dynamic situation in habitual contexts. This is different from Hungarian where telicity emerges in the presence of a particle or a resultative expression and atelicity emerges otherwise for the relevant verbs.
argument realization has been proposed in a variety of analyses. What are of immediate interest to us are theories like Grimshaw and Vikner (1993), Pustejovsky (1991, 1995), van Hout (1996), and RHL (1998, 2001), which share the conjecture that the internal structure of events expressed by verbal predicates determines the argument structure associated with the predicate in a way that each subevent corresponds to a syntactically realized nominal expression.

A specific instantiation of this idea is RHL’s Argument-Per-Subevent Condition, which is formulated as follows:

(12) Argument-Per-Subevent Condition: There must be at least one argument XP in the syntax per subevent in the event structure. (Rappaport Hovav and Levin 2001: 779, (44))

In RHL (1998), they also propose (13).

(13) Each argument XP in the syntax must be associated with an identified subevent in the event structure. (Rappaport Hovav and Levin 1998: 113, (25b))

Notice that this is not a biconditional (contra Goldberg’s 2005 claim). There is nothing in (12) and (13) that would disallow multiple arguments to be linked to a single subevent.

Predictions of (12):
Whereas verbal expressions describing complex events are expected to be obligatorily transitive, verbs expressing simple events are expected to be either (i) obligatorily transitive, or (ii) optionally transitive, or (iii) intransitive.²

The examples in (14) and (15) illustrate lexically causative verbs and resultative constructions, respectively, which all describe complex events and are hence obligatorily transitive, whereas the simple-event denoting verbs in (16) demonstrate all three possibilities described above.

(14) Adam killed/murdered *(Bill).
(15) a. Kate swept *(streets) clean.
 b. John painted *(walls) red.
 c. Peter sang *(himself) hoarse.
(16) a. Kate praised *(Tom).
 b. John painted (walls) all day.
 c. Peter slept *(Tom).

A puzzle:
The hypothesis in (12) has been called into question in works like Goldberg (2005) and Mittwoch (2005), and even Rappaport Hovav and Levin themselves have replaced their event-complexity

² To be more precise, it must be noted that (12) allows any argument including subjects, direct objects and obliques to be paired up with a subevent in the event structure. We use the notion ‘obligatorily transitive’ with complex-event denoting verbal predicates because these predicates in Hungarian appear with accusative-marked objects.
account of argument realization with a more recent proposal advocating manner/result complementarity (cf. RH 2008, RHL 2010).

In this talk we cannot discuss these critical observations, but there is one specific problem that we would like to point out:

In English, there are several predicates describing complex events that contain only a single syntactically realized argument. Some examples are provided in (17).

(17)
 a. The clothes steamed dry on the radiator.
 b. The kettle boiled dry.
 c. The boy grew tall.
 d. The eggs boiled hard.
 e. The house burned to the ground.

(Levin and Rappaport Hovav 2004: 483, (12) and (13))

Likewise, in Hungarian, the same tendency can be observed.

(18)
 a. A ház por-ig égett.
 the house.NOM dust-to burned
 ‘The house burned to the ground.’
 b. A víz el-főtt.
 the water.NOM away-boiled
 ‘The water boiled away.’
 c. A tojás kemény-re főtt.
 the egg.NOM hard-into boiled
 ‘The egg boiled hard.’
 d. A modell csontsovány-ra fogyott.
 the model.NOM skinny-into lost-weight
 ‘The model became skinny as a result of losing weight.’
 e. A fiú nagy-ra nőtt.
 the boy.NOM big-into grew
 ‘The boy grew tall.’

RHL (2004) explain away data like (17a) and (17b) by claiming that although these examples express multiple subevents, these subevents are contemporaneous and from the point of view of the grammar they are considered to be one, simple event. Complex events are associated with temporally independent subevents.

Although this may save examples like The clothes steamed dry on the radiator, all the other examples in (17) describe events where a process subevent clearly precedes a result state. This predicts the obligatory realization of two arguments (one for the process and one for the result state), contra the facts. 3

This suggests that there is a more fundamental problem with how hypotheses like (12) are formulated.

3 For more on problems with the notion of temporal dependence in RHL 2001, see Goldberg and Jackendoff (2004).
4. Predictions of event-complexity accounts with respect to Hungarian

Having examined some strengths and a weakness of event-complexity accounts of argument realization, let us return to Hungarian and see what argument realization patterns we can predict in light of the aspectual behavior of Hungarian resultative particles and resultative expressions if we assume RHL’s Argument-Per-Subevent Condition.

Before this, however, we would like to provide a more precise characterization of the function of verbal particles.

4.1 The function of Hungarian verbal particles

In the past few decades several analyses have been proposed as to the function of verbal particles and resultative expressions in Hungarian including Kiefer (1992), Piñón (1995), Kiefer and Ladányi (2000), É. Kiss (2002), Alberti (2004), É. Kiss (2008), Pethő and Kardos (2008), and Kardos (2012). Here we make reference to three recent proposals:

(i) É. Kiss’s (2008) claim:

| Verbal particles are secondary predicates predicated of the theme argument. |

A problem with this analysis:

While É. Kiss’s characterization of verbal particles proves to be accurate in the case of examples like (19), examples like those in (20) pose a challenge for this theory.

(19) Péter el-itta a pénzé-t.
P.NOM away-drunk the his.money-ACC
‘Péter drank his money away.’

(20) a. Kati el-aludt.
K.NOM away-slept
‘Kati fell asleep.’
b. Kati el-esett.
K.NOM away-fell
‘Kati fell.’

While in (19) the particle el, which means ‘away’, contributes the meaning that Péter’s money is gone, as expected on É. Kiss’s analysis, in (20) it is not case that Kati is away/gone at the termination of the event in either the (a) or the (b) example. Instead, in (20a), Kati ends up in a state such that she is asleep, and in (20b) she ends up in a state such that she is on the ground. That is, all that the particle seems to contribute to the meaning of the verbal predicate is that the denoted event culminates.

A possible way to save the analysis:

On this view it could be perhaps assumed that it is the main verb that contributes the descriptive content as to what state obtains at the termination of the event denoted by the verbal predicate. This would predict, for example, that the verbal expression ki-mos ‘PRT-wash’ entails that the referent of the internal argument ends up in a clean state once the event is over. This, however, is not supported by the data. Consider (21).

(21) János ki-mosta a ruhá-t, de az nem lett igazán clean.
J.NOM out-washed the dress-ACC, but that not became truly clean.
This example shows that the continuation cancelling the attainment of a result state such that the
dress is clean does not yield semantic ill-formedness, thereby serving as a counterexample to the
proposal above (21).

(ii) Pethő and Kardos’s (2008) claim:

Verbal particles like those discussed above are lexical instantiations of a BECOME operator and thus
they transform a lexically atelic and optionally transitive base verb with a simple event structure into
a lexically telic and obligatorily transitive verb, which has a complex event structure.

This analysis also faces problems:
It cannot account for the aspectual difference between degree verbs with and without a particle. As
was shown at the outset, verbs like le-hűt ‘PRT-cool’ and fel-meleget ‘PRT-warm’ differ from hűt
‘cool’ and melegít ‘warm’ in that the former are strictly telic by virtue of describing situations
wherein an explicitly named temperature or one that is recoverable from context is attained at the
termination of the denoted event, whereas predicates containing the base verbs are strictly atelic and
describe situations associated with some change in the temperature of the referent of the internal
argument (see examples (10) and (11)). In other words, although both types of verbs are associated
with a change of state and can be argued to lexicalize a BECOME operator, they have a significantly
different aspectual interpretation.

(iii) Kardos’s (2012) claim:

Verbal particles are telicity-marking elements by virtue of lexicalizing an event maximalization
operator \(\text{MAX}_E \).

The idea that telicity corresponds to event maximalization stems from Filip and Rothstein (2006),
who define \(\text{MAX}_E \) as follows:

(22) Telicity corresponds to the maximalization operator \(\text{MAX}_E \). It is a monadic operator, such that
\(\text{MAX}_E(\Sigma) \subseteq \Sigma \), which maps sets of partially ordered events \(\Sigma \) onto sets of maximal events
\(\text{MAX}_E(\Sigma) \).

(Filip and Rothstein 2006: 139, (2))

In order for \(\text{MAX}_E \) to apply, the largest event that the predicate describes must be determined. In
Kardos (2012), it is proposed that events are partially ordered relative to the (part) structure of the
argument whose referent undergoes a change and the (part) structure of the scale/path that is
traversed in the course of the denoted event, an idea stemming from Beavers’s figure-path relations
analysis (2012).

In our view, this analysis seems to be most compatible with the data discussed so far, which again
suggest that all that Hungarian particles and resultative expressions contribute to the meaning of
the verbal predicate is that the denoted event culminates in a final state. This also gives rise to the
fact that these verbal expressions describe complex events.
4.2 Predictions of the Argument-Per-Subevent Condition with respect to Hungarian

Next, let us see what argument structural effects particles and resultative expressions have in Hungarian.

Assumption 1: Each subevent in the event structure of a verbal predicate must be paired up with at least one syntactically realized argument.

Assumption 2: Verbs appearing with a resultative particle describe complex events just like resultative constructions.

Prediction: Verbs having a resultative particle and resultative constructions appear with at least two arguments.

First, in episodic sentences, lexically causative verbs must be accompanied by a particle and a syntactically realized internal argument.

(23)

 the water.NOM *(PRT)-solved *(a spoon sugar-ACC)
 ‘The water solved a spoonful of sugar.’

b. Feri *(meg)-oldott *(egy feladat-ot).
 F.NOM *(PRT)-solved *(a task-ACC)
 ‘Feri solved a task.’

 J.NOM *(PRT)-killed *(a man-ACC)
 ‘János killed a man.’

By contrast, in generic sentences, öl ‘kill’ and old ‘solve’ can actually occur without a particle, as shown in (24). Given the absence of a culmination point to the events denoted by the (a) and (b) examples here, the appearance of a particle is actually not required. Also, the simple event structure associated with these verbal expressions is expected to allow an intransitive structure (cf. Section 3), which is again borne out by these data.

(24)

a. A cián gyorsan öl.
 the cyanide.NOM quickly kills
 ‘Cyanide kills quickly.’

b. A víz oldja a cukr-ot.
 the water solves the sugar-ACC
 ‘Water solves sugar.’

Yet another type of example where the base verb öl ‘kill’ appears without a particle is given in (25), where this verb is used metaphorically and the verbal expression ölik egymást ‘they fight with each other’ describes an activity. Again, since activities are unbounded, the absence of a particle follows.

(25)

A gyerekek egész nap ölték egymás-t.
 the children.NOM whole day killed each other-ACC
 ‘The children fought with each other all day.’

Given the similar event structural effects of particles and resultative expressions, we also expect that predicates containing resultative expressions show a similar argument structural behavior to what is observable in the case of particle verbs. Compare the (a) and (b) examples in (26), where the verb subcategorizes for the object egy kerítést ‘a fence.ACC’.
In both examples the complexity of the denoted events gives rise to the obligatory nature of at least two arguments.

In addition to subcategorized arguments, **non-subcategorized arguments** can also occupy the object position. In (27), the reflexive pronoun *magát ‘oneself.ACC’ occupies the object position in **resultative constructions**, whereas in (28) *magát ‘oneself.ACC’ appears with a **particle verb**.

Next, the examples in (29) illustrate **non-subcategorized objects other than reflexive pronouns**.

As is clear, the absence of an object in all these examples yields an ungrammatical structure.

4.3 Some puzzles

The Hungarian data that we have seen so far fall out of event-structure based analyses like RHL (1998, 2001) and thus provide support for them, but there are also counterexamples to such analyses. Here we differentiate between three different types of puzzles.

First, the examples in (30) pose a challenge for hypotheses like RHL’s Argument-Per-Subevent Condition in that they **describe complex events** (notice the presence of a particle on each verb) and
yet they behave intransitively. What is also interesting about these data is that the head verbs in each case incorporate the theme argument, which is indicated in bold face.4

(30) János 10 perc alatt/*10 perc-ig meg-ebédelt/meg-vacsorázott
J.NOM 10 minute under/*10 minute-for PRT-ate.lunch/PRT-ate.dinner
be-szalonnázott/be-borozott.
PRT-ate.bacon/PRT-drank.wine
‘János ate lunch/dinner/ate bacon to excess/drank wine to excess in 10 minutes.’

These verbs also have base verb counterparts and the only respect in which the particle verbs differ from the base verbs is that the former give rise to telic interpretations, whereas the latter yield atelicity, as shown by the temporal adverbial test in (30) and (31). As for their argument structure properties, both types of verbs appear intransitively.

(31) János 10 perc-ig/*10 perc alatt ebédelt/vacsorázott
J.NOM 10 minute-for/*10 minute under ate.lunch/ate.dinner
szalonnázott/borozott.
ate.bacon/drank.wine
‘János ate lunch/dinner/ate bacon/drank wine for 10 minutes.’

A similar aspectual and argument structural pattern is observable in the case of intransitive verbs like megborotválkozik ‘shave oneself’ and megfésülködik ‘comb one’s hair’ and their base verb counterparts, which are associated with a reflexive meaning. Consider (32) and (33).

(32) Péter 10 perc alatt/*10 perc-ig meg-borotválkozott/meg-fésülködött
P.NOM 10 minute under/*10 minute for PRT-shaved/PRT-combed.his.hair
meg-mosakodott.
PRT-washed.himself
‘Péter shaved/combed his hair/washed his face in 10 minutes.’
(33) Péter 10 perc-ig/*10 perc alatt borotválkozott/fésülködött/mosakodott.
P.NOM 10 minute-for/*10 minute under shaved/combed.his.hair/washed.his.face
‘Péter shaved/combed his hair/washed himself for 10 minutes.’

Just like with (30) and (31), the head verbs in (32) and (33) are similar in terms of their argument structural properties in that they are syntactically intransitive, and they differ aspectually in that telicity emerges with particle verbs and atelicity otherwise.

Yet another puzzling pattern, also addressed by É. Kiss (2005), is demonstrated in (34), where the predicate contains a complex-event denoting, optionally transitive particle verb and no syntactically realized object.

(34) Kati egy óra alatt/*egy órá-t fel-takarított/fel-porszívózott/ki-vasalt.
K.NOM an hour under/*an hour-for PRT-cleaned/PRT-hoovered/PRT-ironed
‘Kati cleaned/hoovered/ironed in an hour.’

What is interesting about these verbs and their base verb counterparts is that, when used intransitively, these predicates can only be interpreted to describe stereotypical activities like the cleaning of a house, but not that of a car or a bathtub. This is shown in (35).

(35) a. Sára 10 perc alatt/10 perc-ig ki-takarított (egy ház-at/*egy autó-t/

4 Similar data are also discussed in É. Kiss (2005).
S.NOM 10 minute under/10 minute-for PRT-cleaned (a house-ACC/*a car-ACC/
*egy fürdőkád-at).
a bathtub-ACC
‘Sára cleaned a house in 10 minutes.’
b. Sára 10 perc-ig/10 perc alatt takarított (egy ház-at/*egy autó-t/
S.NOM 10 minute-for/10 minute under cleaned (a house-ACC/a car-ACC/
*egy fürdőkád-at).
a bathtub-ACC
‘Sára cleaned a house for 10 minutes.’

As is apparent, similarly to the previous examples of this section, the particle verbs differ from the base verbs in that the former yield telicity, whereas the latter receive an atelic interpretation.

Notice that a common property that all the examples in (30)-(35) have is that they have as many semantic arguments as subevents; however one of these arguments, the theme, is not expressed as a syntactic argument. This suggests that hypotheses like the Argument-Per-Subevent Condition might be too strong when assuming that each subevent in the event structure must be associated with a syntactically realized argument.

(ii) Predicates expressing instantaneous events

As for predicates expressing instantaneous telic situations, the obligatory presence of a particle (or a resultative expression), which was shown in Section 2, is predicted given telicity marking in Hungarian via event maximalization encoded in particles or resultative expressions.

A puzzle that arises in this predicate class is posed by verbs like nyer ‘win’ and meg-nyer ‘PRT-win’, where it is both the base verb and the particle verb that give rise to a telic interpretation, contra the expectation that the base verb gives rise to atelicity and the particle verb yields telicity thanks to the event-maximalizing particle.

An interesting property in which the two verbs differ is that the particle verb is associated with a presupposition that the base verb does not give rise to. This is shown in (36).⁵

(36) a. Kati nyert egy autó-t.
K.NOM won a car-ACC
‘Kati won a car.’
b. Kati meg-nyert egy autó-t.
K.NOM PRT-won a car-ACC
‘There were cars that could be won and Kati won one of these cars.’

(iii) Telic predicates containing unaccusative verbs and their causative counterparts

Finally, unaccusative verbs associated with telic event descriptions and their causative counterparts, if there are any, show quite systematically the pattern illustrated below in (37) and (38), whereby a complex-event denoting predicate has fewer arguments than subevents. For example, in (37a) and (37b) the predicates describe events including a process subevent and a result state and yet they appear with one syntactically realized argument. In (37c) and (37d) the causative counterparts of the predicates express complex events containing a causing subevent, a process and a result state but only two syntactically realized arguments.

⁵ For an analysis of verbs similar to (36), one which incorporates presuppositions, see Piñón (2008).
Finally, the examples in (38) describe complex events by virtue of expressing instantaneous transitions between opposite states and yet they appear with a single argument.

5. Conclusion

- The argument structural behavior of a significant subset of Hungarian base verbs, particle verbs and resultative constructions falls out of analyses that assume that event structure correlates with argument structure in a way that there must be at least one syntactically realized argument for each subevent in the event structure.

- What emerges from the examination of another subset of verbs, i.e. verbs like *meg-ebédel* ‘PRT-eat.lunch’, *meg-borotválkozik* ‘PRT-shave’, and *ki-takarit* ‘PRT- clean’ is that a weakening of (12) might be necessary in a way that subevents are expected to be paired up with semantic and not syntactically realized arguments.

- The examples in (37) and (38) are serious counterexamples to the Argument-Per-Subevent Condition and other similar hypotheses. Given that the argument structural pattern characterizing these verbs is exhibited systematically across languages, these data might trigger further thinking as to how to formulate the principle ensuring the interaction between event structure and argument structure.
Acknowledgement: This work has been supported by the project Comprehensive Grammar Resources: Hungarian (OTKA 100804).

References

